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ABSTRACT

Group Equivariant Convolutions (GConvs) enable convolu-
tional neural networks to be equivariant to various transfor-
mation groups, but at an additional parameter and compute
cost. We investigate the filter parameters learned by GConvs
and find certain conditions under which they become highly
redundant. We show that GConvs can be efficiently decom-
posed into depthwise separable convolutions while preserv-
ing equivariance properties and demonstrate improved per-
formance and data efficiency on two datasets. All code is
publicly available at github.com/Attila94/SepGrouPy.

Index Terms— group equivariant convolutions, depth-
wise separable convolutions, efficient deep learning

1. INTRODUCTION

Adding convolution to neural networks (CNNs) yields trans-
lation equivariance [1]: first translating an image x and then
convolving is the same as first convolving x and then trans-
lating. Group Equivariant Convolutions [2] (GConvs) enable
equivariance to a larger group of transformationsG, including
translations, rotations of multiples of 90 degrees (p4 group),
and horizontal and vertical flips (p4m group). Equivariance
to a group of transformations G is guaranteed by sharing pa-
rameters between filter copies for each transformation in the
group G. Adding such geometric symmetries as prior knowl-
edge offers a hard generalization guarantee to all transfor-
mations in the group, reducing the need for large annotated
datasets and extensive data augmentation.

In practice, however, GConvs occasionally learn filters
that are near-invariant to transformations in G. An invari-
ant filter is independent of the transformation and will for
GConvs yield identical copies of the transformed filters in
the consecutive layer, as shown in Fig. 1. This implies pa-
rameter redundancy, as these filters could be represented by
a single spatial kernel. We propose an equivariant pointwise
and a depthwise decomposition of GConvs with increased pa-
rameter sharing and thus improved data efficiency. Motivated
by the observed inter-channel correlations in learned filters
in [3] we explore additionally sharing the same spatial kernel
over all input channels of a GConv filter bank. Our contri-
butions are: (i) we show that near-invariant filters in GConvs
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Fig. 1: Filters and feature maps of a GConv architecture
trained on Rotated MNIST. Rotation invariant filters in Layer
2 result in identical feature maps FM2 (green) and cause
Layer 3 to learn identical weights along the group dimension
g (blue). In contrast, non-symmetric filters in Layer 2 (red)
result in non-identical filters in Layer 3 (brown).

yield highly correlated spatial filters; (ii) we derive two de-
composed GConv variants; and (iii) improve accuracy com-
pared to GConvs on RotMNIST and CIFAR10.

2. RELATED WORK

Equivariance in deep learning. Equivariance is a promising
research direction for improving data efficiency [4]. A vari-
ety of methods have extended the Group Equivariant Convo-
lution for the p4 and p4m groups introduced in [2] to larger
symmetry groups including translations and discrete 2D rota-
tions [5, 6], 3D rotations [7, 8, 9], and scale [10, 11]. Here,
we investigate learned invariances in the initial GConv frame-
work [2] for the p4 and p4m groups, yet our analysis extends
to other groups where invariant filters exist.
Depthwise separable decomposition [12]. These decom-
pose a multi-channel convolution into spatial convolutions ap-
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plied on each individual input channel separately, followed by
a pointwise (1x1) convolution. Depthwise separable convolu-
tions significantly reduce parameter count and computation
cost at the expense of a slight loss in representation power
and therefore generally form the basis of network architec-
tures optimized for efficiency [13, 14, 15]. The effectiveness
of depthwise separable convolutions is motivated [3] by the
observed inter-channel correlations occurring in the learned
filter banks of a CNN, which is quantified using a PCA de-
composition. We do a similar analysis to motivate and derive
our separable implementation of GConvs.

3. METHOD

3.1. Group Equivariant Convolutions

Equivariance to a group of transformations G is defined as

Φ(Tgx) = T ′gΦ(x), ∀g ∈ G, (1)

where Φ denotes a network layer and Tg and T ′g a transforma-
tion g on the input and feature map, respectively. Note that
in the case of translation equivariance T and T ′ are the same,
but in general not need to be. To simplify the explanation,
we first focus on the group p4 of translations and 90-degree
rotations, but extend to larger groups later.

Let us denote a regular convolution as

X l+1
n,:,: =

Cl∑
c

F l
n,c,:,: ∗X l

c,:,:, (2)

withX the input and output tensors of size [Cl, H,W ], where
Cl is the number of channels in layer l, H is height and W is
width, and F the filter bank of size [Cl+1, Cl, k, k], with k
the spatial extent of the filter.

In addition to spatial location, GConvs encode the added
transformation group G in an extra tensor dimension such
that X becomes of size [Cl, Gl, H,W ], where Gl denotes
the size of the transformation group G at layer l, i.e. 4 for
the p4 group. Likewise, GConv filters acting on these feature
maps contain an additional group dimension, yielding a fil-
ter bank F l of size [Cl+1, Cl, Gl, k, k]. As such, filter banks
in GConvs contain Gl times more trainable parameters com-
pared to regular convolutions. A GConv is then performed
by convolving over both the input channel and input group
dimensions Cl and Gl and summing up the outputs:

X l+1
n,h,:,: =

Cl∑
c

Gl∑
g

F̃ l
n,h,c,g,:,: ∗X l

c,g,:,:. (3)

Here F̃ l denotes the full GConv filter of size [Cl+1, Gl+1,
Cl, Gl, k, k] containing an additional dimension for the out-
put group Gl+1. F̃ l is constructed from F l during each for-
ward pass, where Gl+1 contains rotated and cyclically per-
muted versions of F l (see [2] for details). Note that input

images do not have a group dimension, so the input layer has
Gl=1 and X1

c,g,:,: reduces to X1
c,:,:, whereas for all following

layers Gl=4 for the p4 group (and Gl=8 for p4m).

3.2. Filter redundancies in GConvs

A rotational symmetric filter is invariant to the relative orien-
tation between the filter and its input. Thus, if the filter kernels
in the group dimension of a p4 GConv filter bank F l are rota-
tional symmetric and identical, the resulting feature maps will
also be identical along the group dimension due to the rota-
tion and cyclic permutation performed in constructing the full
filter bank F̃ l. As a result, the filters in the subsequent layer
acting on these feature maps receive identical gradients and,
given same initialization, learn identical filters. This is illus-
trated in Fig. 1 where a p4 equivariant CNN is trained on Ro-
tated MNIST. The first layer contains a single fixed rotation
invariant filter. All layers have equal initialization along the
group dimension and linear activation functions. The filters
in layer 2 converge to be identical along the group dimension.
Furthermore, the filter kernels in the second layer belonging
to the first output channel (green) are also rotational symmet-
ric, resulting in identical feature maps in FM2 (green) and
consequently the filters learned in the first input channel of
layer 3 (blue) become highly similar. This is in contrast to
the non-symmetric filters in layer 2 (red), resulting in non-
identical filters in layer 3 (brown).

Even non-rotational symmetric filters can induce filter
correlations in the subsequent layer. For instance, an edge
detector will result in inverse feature maps along the group
dimension, i.e. g0≈ − g2 and g1≈ − g3 and the filters act-
ing on these feature maps will receive inverse gradients and
consequently converge to be inversely correlated. Inversely
correlated filters can be decomposed into the same spatial
kernel multiplied by a positive and negative scalar.

Upon visual inspection of the learned filter parameters of
a regular p4 equivariant CNN we observe that, even without
any fixed symmetries or initialization and with ReLU acti-
vation functions, the filter kernels tend to be correlated along
the group axis. To quantify this correlation we perform a PCA
decomposition similar as in [3]. We reshape the filter bank F
to size [Cl+1 × Cl, Gl, k2] and perform PCA on each set of
filters Fn,:,: for all n ∈ [1, Cl+1 × Cl], where for each n we
have Gl features with k2 samples. This results in Gl princi-
pal components of size k2, with PC1 being the filter kernel
explaining the most variance within the decomposed set. We
perform this decomposition for all layers in a p4 equivariant
network. Fig. 2 shows the ratio of the variance explained by
PC1 for each layer (after the input layer), before and after
training. In many cases a substantial part of the variance is
explained by a single component, demonstrating a significant
redundancy in filter parameters.
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Fig. 2: Ratio of variance explained by the first principal component when decomposing a filter kernel along the group dimension,
before (blue) and after (red) training on Rotated MNIST. Redundancy in filter parameters increases as the network converges.

3.3. Separable Group Equivariant Convolutions

To exploit the correlations in GConvs we decompose the filter
bank F l into a 2D kernel K that is shared along the group
dimension, and a pointwise component w which encodes the
inter-group correlations:

F l
n,c,g,:,: = Kl

n,c,:,: · wl
n,c,g. (4)

The full GConv filter bank is then constructed as

F̃ l
n,h,c,g,:,: = Th(Kl

n,c,:,:) · w̃l
n,h,c,g, (5)

where Th denotes the 2D transformation corresponding to
output group channel h and w̃l contains copies of wl that are
cyclically permuted along the input group dimension. A naive
implementation would be to precompute F̃ and perform a reg-
ular GConv as in Eq. (3). Alternatively, for better computa-
tional efficiency we can substitute the filter decomposition in
Eq. (5) into the GConv in Eq. (3) and rearrange as follows:

X l+1
n,h,:,: =

Cl∑
c

Gl∑
g

X l
c,g,:,: ∗

(
Th(Kl

n,c,:,:) · w̃l
n,h,c,g

)
(6)

=

Cl∑
c

Gl∑
g

(
X l

c,g,:,: · w̃l
n,h,c,g

)
∗ Th(Kl

n,c,:,:) (7)

=

Cl∑
c

X̃ l
n,h,c,:,: ∗ Th(Kl

n,c,:,:) (8)

with

X̃ l
n,h,c,:,: =

Gl∑
g

(
X l

c,g,:,: · w̃l
n,h,c,g

)
. (9)

Expanding the dimensions of w̃l to [Cl+1, Gl+1, Cl, Gl, 1, 1]
we can implement Eq. (9) as a grouped 1 × 1 convolution
with Cl groups, followed by a grouped spatial convolution
with Cl+1×Gl+1 groups, as given in Eq. (8). We refer to this
separable GConv variants as g-GConv, denoting the summa-
tion variable in Eq. (9).

Alternatively, we share the spatial kernelK along both the
group and input channel dimension by decomposing F l as:

F l
n,c,g,:,: = Kl

n,:,: · wl
n,c,g, (10)

F̃ l
n,h,c,g,:,: = Th(Kl

n,:,:) · w̃l
n,h,c,g. (11)

Substituting F̃ l in Eq. (3) and rearranging yields

X l+1
n,h,:,: =

Cl∑
c

Gl∑
g

X l
c,g,:,: ∗

(
Th(Kl

n,:,:) · w̃l
n,h,c,g

)
(12)

=

Cl∑
c

Gl∑
g

(
X l

c,g,:,: · w̃l
n,h,c,g

)
∗ Th(Kn,:,:) (13)

= X̃ l
n,h,:,: ∗ Th(Kl

n,:,:) (14)

with

X̃ l
n,h,:,: =

Cl∑
c

Gl∑
g

(
X l

c,g,:,: · w̃l
n,h,c,g

)
. (15)

This way the GConv essentially reduces to an inverse depth-
wise separable convolution with Eq. (15) being the pointwise
and Eq. (14) being the depthwise component. This variant is
named gc-GConv after the summation variables in Eq. (15).

While the g and gc decompositions may impose too strin-
gent restrictions on the hypothesis space of the model, the im-
proved parameter efficiency, as detailed in section 3.4, allows
us to increase the network width given the same parameter
budget resulting in better overall performance.

3.4. Computation efficiency

The decomposition of GConvs allows for a theoretically
more efficient implementation, both in terms of the num-
ber of stored parameters and multiply-accumulate operations
(MACs). As opposed to the [Cl × Gl × k2 × Cl+1] param-
eters in a GConv filter bank, g- and gc-GConvs require only
[Cl × Cl+1 × (Gl + k2)] and [Cl+1 × (Cl × Gl + k2)],
respectively. Similarly, a regular GConv layer performs
[Cl×Gl×k2×W×H×Cl+1×Gl+1] MACs, whereas g- and
gc-GConvs do only [Cl×Cl+1×Gl+1×W ×H×(Gl+k2)]
and [Cl+1 × Gl+1 ×W × H × (Cl × Gl + k2)], assuming
’same’ padding. This translates to a reduction by a factor of
1
k2 + 1

Gl and 1
k2 + 1

Cl×Gl , both in terms of parameters and
MAC operations. The decrease in MACs comes at the cost of
a larger GPU memory footprint due to the need of storing in-
termediate feature maps, as is generally the case for separable
convolutions. Separable GConvs are therefore especially suit-
able for applications where the available processing power is
the bottleneck as opposed to memory.



Table 1: Test error on Rotated MNIST - comparison with z2
baseline and other p4-equivariant methods. w denotes net-
work width. Separable GConv architectures perform better
compared to regular GConvs (upper part) and comparable to
other equivariant methods (lower part).

Network Test error w Param. MACs

Z2CNN [2] 5.20 ± 0.110 20 25.21 k 2.98 M
c-Z2CNN 4.64± 0.126 57 25.60 k 4.14 M
P4CNN [2] 2.23 ± 0.061 10 24.81 k 11.67 M
g-P4CNN [ours] 2.60 ± 0.098 10 8.91 k 4.37 M
gc-P4CNN[ours] 2.88 ± 0.169 10 3.42 k 1.80 M
g-P4CNN [ours] 1.97 ± 0.044 17 25.26 k 12.34 M
gc-P4CNN [ours] 1.74 ± 0.070 30 24.64 k 13.01 M

SFCNN [6] 0.71 ± 0.022 - - -
DREN [17] 1.56 - 25 k -
H-Net [18] 1.69 - 33 k -
α-P4CNN [19] 1.70± 0.021 10 73.13 k -
a-P4CNN [20] 2.06 ± 0.043 - 20.76 k -

4. EXPERIMENTS

4.1. Rotated MNIST

We construct a g-separable (Eqs. 8-9) and gc-separable
(Eqs. 14-15) version of the P4CNN architecture [2] and
evaluate on Rotated MNIST [16]. Rotated MNIST has 10
classes of randomly rotated handwritten digits with 12k train
and 60k test samples. We set the width w of the g-P4CNN
and gc-P4CNN networks such that the number of parameters
are as close as possible to our Z2CNN and P4CNN baselines
of 10 and 20 channels, respectively. We follow the training
procedure of [2] and successfully reproduced the results.

Table 1 shows the test error averaged over 5 runs. Both g-
and gc-P4CNN significantly outperform the regular P4CNN
architecture and perform comparably or better than other
architectures with a similar parameter count. Both g- and
gc-P4CNN also outperform a depthwise separable version
of Z2CNN (c-Z2CNN), validating that GConvs are more
efficiently decomposable than regular convolutions. Addi-
tionally, we evaluate data-efficiency in a reduced data setting.
As Fig. 3a shows, both g- and gc-P4CNN consistently outper-
form P4CNN. Sharing the same 2D kernel in a GConv filter
bank is thus a strong inductive bias and improves the model’s
sample efficiency. The test error as a function of number of
parameters is also shown in Fig. 3b. Separable GConvs do
better for all model capacities.

4.2. CIFAR 10

Similarly, we perform a benchmark on the CIFAR10 dataset [21]
using a p4m equivariant version of ResNet44 as detailed
in [2]. CIFAR 10+ denotes moderate data augmentation in-
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Fig. 3: Test error on Rotated MNIST for varying training set
(a) and model sizes (b). Architectures with separable GConvs
perform consistently better.

Table 2: Test error on CIFAR10 - comparison with other
p4m-equivariant methods. gc-p4m-ResNet44 performs best.

Network CIFAR10 CIFAR10+ Param.

ResNet44† [2] 13.10 7.66 2.64M
p4m-ResNet44‡ [2] 8.06 5.78 2.62M
αF -p4m-ResNet44 [19] 10.82 10.12 2.70M
a-p4m-ResNet44 [20] 9.12 - 2.63M
g-p4m-ResNet44 [ours] 7.60 6.09 1.78M
gc-p4m-ResNet44 [ours] 6.72 5.43 1.88M
†‡ Unable to reproduce results from [2]: 9.45 / 5.61†, 6.46 / 4.94‡.

cluding random horizontal flips and random translations of
up to 4 pixels. Our gc-p4m-ResNet44 outperforms all other
methods using less parameters, as shown in Table 2. Also in
a low data regime using only 20% of the training samples our
gc-p4m architecture outperforms the regular p4m network
with an error rate of 13.43% vs. 14.20%.

5. DISCUSSION

Our method exploits naturally occurring symmetries in
GConvs by explicit sharing of the same filter kernel along
the group and input channel dimension using a pointwise and
depthwise decomposition. Experiments show that imposing
such restriction on the architecture only causes a minor per-
formance drop while allowing to significantly reduce the net-
work parameters. This in turn (i) improves data efficiency and
(ii) allows to increase the network width for the same parame-
ter budget resulting in better overall performance. Sharing the
spatial kernel over only the group dimension (g) proves less
effective than additionally sharing over input channels (gc) as
the latter also efficiently exploits inter-channel correlations
in the network. This allows to further increase the network
width and thereby its representation power.
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